TABLES & CRAPHES Utilisation du tableurgrapheur

Introduction

Un tableur est un logiciel informatique utilisé pour traiter des données, le plus souvent numériques ou textuelles, organisées dans un tableau. Son intérêt réside dans le fait que le contenu de certaines cases²⁷ du tableau sont dépendants du contenu d'autres par l'intermédiaire d'une formule et peuvent être automatiquement mis à jour. Par formule, il faut entendre expression mathématique comportant une ou plusieurs variables représentant certaines cases du tableau.

Illustrons par un exemple.

Le périmètre d'un carré est égal, comme chacun sait, à quatre fois la longueur d'un côté, qui peut se traduire par la formule P = $4 \times c$. et son aire au produit de la longueur d'un côté par lui-même²⁸ qui peut se traduire par la formule A = $c \times c$.

Transposons cet exemple dans le cadre du tableur :

Dans le tableau ci-dessus, la case B1est destinée à contenir la longueur du côté. Après saisies des valeurs 7 puis 10 dans la case B1, nous obtenons :

	А	В	puis
1	Longueur du côté	- 7	
2	Périmètre	28	
3	Aire	49	

	А	В
1	Longueur du côté	10
2	Périmètre	40
3	Aire	100

Le logiciel calcule automatiquement le périmètre et l'aire du carré en fonction de la longueur du côté mise dans la case B1. Les cases B2 et B3 dans lesquelles s'inscrivent ces résultats sont « fonction » de la case B1.

Ces notions mathématiques d'expressions algébriques, de variables et de fonctions sont abordées par les élèves de collège dans le cadre de leur cours de mathématique. Les Instructions Officielles²⁹ précisent :

Les activités s'articuleront essentiellement suivant deux axes :

- utilisation d'expressions littérales pour des calculs numériques,
- utilisation d'expressions littérales dans la mise en équation et la résolution de problèmes divers.

L'emploi d'un tableur permet donc aux élèves de se trouver en situation de les utiliser ces notions, de les mettre en action, d'observer les effets produits, en un mot, de les faire « vivre » et ainsi de mieux les appréhender. Le mécanisme de dévolution chez l'élève se renforce. G. Brousseau le définit comme une capacité de l'élève à s'approprier un problème posé par l'enseignant. Il doit, pour cela, mettre en œuvre toutes ces capacités cognitives et, si besoin, les faire évoluer pour permettre l'intégration de la nouvelle notion.

²⁷ Les initiés parlent plutôt de « cellules ».

²⁸ Le lecteur savant en mathématique aura reconnu la notion de carré $c \times c = c^2$.

²⁹ Instructions Officielles, programme de mathématique de la classe de quatrième, Février 1988.

De plus, comme depuis quelques années, tous les tableurs sont accompagnés de grapheurs, il est relativement facile pour l'élève de construire une représentation graphique d'un ensemble de valeurs. Cette action favorise le changement de cadre de la notion étudiée. Dans un tableau, les relations entre les nombres sont du type opératoire (exemple : le double de) alors que la représentation graphique met en évidence des propriétés géométriques (exemple : ensemble de points alignés). Ces différents développements d'une même notion (exemple : la proportionnalité) dans des cadres différents, de par leurs diversités et leurs interactions, sont porteuses de sens.

Dans la suite, j'expose une suite d'activités utilisant le tableur et le grapheur pour des élèves de quatrième et de troisième. J'ai trouvé mon inspiration il y a quelques années dans un article de la revue « Sciences et Vie Micro »³⁰ et l'ai pratiqué depuis avec de nombreuses classes. Les exercices que je propose sont destinés à des élèves ou à leurs professeurs, soit dans le cadre de la classe, soit en usage personnel, à la maison ou dans un site d'accès libre. Pour favoriser l'autonomie, j'ai multiplié les points de repères visuels que sont les copies d'écran. Elles permettent de vérifier la réussite d'une action réalisée par comparaison avec le résultat à obtenir.

- La première partie, volontairement concise (deux pages), permet la prise en main du tableur et montre les gestes essentiels utilisés dans un environnement graphique informatique, avec en particulier l'usage du « copier-coller ». Ces procédés permettent de stocker en mémoire un ensemble d'informations de natures diverses et de les rappeler ensuite.
- La seconde, beaucoup plus détaillée (quatorze pages), aborde les fonctions trigonométriques étudiées en classe de quatrième, puis de troisième. Cette partie propose des activités « papier-crayon » en relation avec les activités informatiques. Il me paraît utile de ne pas négliger les premières. D'une part, est-il utile de rappeler que l'évaluation des compétences en informatique dans le cadre du cours de mathématique n'est pas de mise au collège et que celles en mathématique se font essentiellement un stylo à la main !? D'autre part, à la lumières des expériences réalisée pendant la précédente décennie, il m'apparaît que les pratiques informatiques ne devraient pas être détachées d'autres plus traditionnelles. Je formule l'hypothèse que leur association est bénéfique pour l'apprenant dans la mesure ou elle renforce ses connaissances à la fois en mathématique et en informatique de par les interactions qu'elle provoque.

De plus, la maîtrise de l'informatique comme outil permet d'explorer de nombreuses situations qu'il ne serait pas possible d'envisager avec les moyens habituels. Elle permet en outre d'émettre plus de conjectures et d'en explorer la validité. Après chaque série d'exercices, j'invite expressément les élèves à développer leurs initiatives dans cette direction.

³⁰ Comment faire des courbes avec Works 2 (Sciences et Vie Micro N° 92 - Mars 1992)

Prise en main du tableur

Les activités proposées doivent permettre à l'utilisateur d'accéder à une certaine maîtrise des pratiques indispensables à l'usage du tableur comme « sélectionner », « copier » et « coller ».

Présentation du tableur

Un tableur est un logiciel qui se présente sous forme d'un tableau composé de <u>cellules</u>.

cellule : case

Chaque cellule du tableau peut recevoir un nombre, du texte ou une formule.

Chaque cellule est repérée, comme dans un mot-croisé, par une lettre et par un nombre. Chaque colonne est désignée par une ou deux lettres : A, B, C,..., Z, AA, AB,... et chaque ligne par un nombre : 1,2,3...

<u>exemple</u> : la cellule B4 est à l'intersection de la colonne B et de la ligne 4 [\rightarrow copie d'écran].

La fonction la plus intéressante d'un tableur est d'effectuer automatiquement une série de calculs. Ces calculs s'effectuent par l'intermédiaire de formules que l'utilisateur définit et inscrit dans un certain nombre de cellules préalablement sélectionnées.

1							
Ű	<u>F</u> i	chier	<u>E</u> dit	ion	Affic	hag	e
A	ial			±	10	ŧ	P
-		B4					
		A			В		С
	1						
	2						
	3						
4	4					J	
	5						
	6						
	1						
	8						
	9						
1	0						
1	1						
1	2						
1	<u>ј</u> Л						
1	4 5						
1	6						
1	7						
1	8						
1	9					1	
2	0					1	
14	ſг						

Premières manipulations

Sélectionner

Sélectionner une cellule

En déplaçant la souris, amener le pointeur (en forme de croix) dans une cellule et <u>cliquer</u>. La cellule sélectionnée apparaît entourée d'un cadre.

cliquer : appuyer sur le bouton gauche de la souris.

<u>exercice</u> : Sélectionner les cellules A1, puis B9, F5 et Z30. Pour cette dernière, utiliser les barres de défilement vertical (à droite du tableau) et horizontal (en bas du tableau) en cliquant sur les boutons fléchés disposés à leurs extrémités.

Sélectionner une plage de cellules

Cliquer dans la cellule supérieure gauche de la plage de cellules, puis faire <u>glis-</u> <u>ser</u> la souris jusqu'à la cellule inférieure droite de la plage. Le plage sélectionnée apparaît en « surbrillance », c'est à dire avec un fond contrasté.

```
plage : groupe de cellules
```

glisser : déplacer la souris sans lâcher le bouton gauche.

<u>exercice</u> : Sélectionner le groupe de cellules verticales A1-A5, puis recommencer avec le groupe horizontal B3-F3, puis avec le groupe rectangulaire A2-C8 [\rightarrow copie d'écran], puis avec le groupe A2-B25.

Lorsque l'utilisateur atteint le bord du tableau, ce dernier défile automatiquement de manière à faire apparaître les cellules suivantes.

Tant que l'utilisateur ne lâche pas le bouton de la souris, la sélection peut être ajustée.

Sélectionner une colonne

Cliquer sur le bouton en haut du tableau qui porte la lettre de la colonne sélectionnée. La colonne sélectionnée apparaît en surbrillance.

exercice :sélectionner la colonne A, puis la colonne F.

Sélectionner une ligne

Cliquer sur le bouton à gauche du tableau qui porte le nombre de la ligne sélectionnée. La ligne sélectionnée apparaît en surbrillance.

exercice : sélectionner la ligne 2, puis la ligne 7.

Copier - Coller

Copier-coller un nombre

- 1. Saisir le nombre 5 dans la cellule A1.
- 2. Copier cette valeur.

Copier : Commande Edition-Copier du menu supérieur.

- 3. Sélectionner la plage de cellules C1-C10.
- 4. <u>Coller</u>. [\rightarrow copie d'écran]

Coller : Commande Edition-Coller du menu supérieur.

Copier-coller une formule

- 1. Sélectionner la cellule A2.
- 2. Saisir la formule = A1 + 2 dans cette cellule.
- 3. Copier cette formule.
- 4. Sélectionner la plage de cellules C2-C10.
- 5. Coller. [\rightarrow copie d'écran]

Observer la différence avec le résultat de l'exercice précédent.

	A	В	С	
1	5		5	Γ
2			5	
3			5	
4			5	
5			5	[
6			5	
7			5	
8			5	
9			5	
10			5	
11				

	Α	В	С	
1	5		5	
2	7		7	
3			9	ľ
4			11	
5			13	ſ
6			15	
7			17	ſ
8			19	
9			21	ľ
10			23	ľ
44				r

Cosinus, sinus, tangente

La notion de cosinus est étudiée en classe de quatrième, celles de sinus et de tangente le sont en classe de troisième (programme³¹ de mathématique du collège actuellement en vigueur).

Les activités sont réparties en 3 séquences successives.

1.	Table de cosinus et représentation graphique.	Niveau quatrième
2.	Table trigonométrique et représentations graphiques.	Niveau troisième
3.	Propriétés des fonctions trigonométriques.	Niveau troisième

La deuxième séquence (table trigonométrique...) est un complément de la première (table de cosinus...) ; la troisième séquence (propriétés...) est un complément de la deuxième.

Dans chaque partie, deux types d'activités précisées par des icônes, sont proposées :

Prérequis

L'utilisateur peu familiarisé avec les manipulations informatiques comme « sélectionner », « copier » et « coller », est invité à réaliser les exercices proposés dans le chapitre Prise en main du tableur.

Table de cosinus et représentation graphique

Table de cosinus

Reproduire sur le papier un tableau de 2 colonnes sur 19 lignes. (modèle de droite à recopier et compléter)

Dans la colonne de gauche, mettre les valeurs d'angle de 0° à 90° de 5 en 5 degrés.

Dans la colonne de droite, mettre les valeurs correspondantes, arrondies au troisième chiffre après la virgule, du cosinus de l'angle considéré. Ces résultats sont données par une calculette scientifique.

angle (en °)	cosinus
0	1
5	0,996
10	0,985
15	0,966

<u>exemple</u> : pour obtenir le cosinus de l'angle 10°, taper sur le clavier de la calculette le nombre 10, puis appuyer sur la touche

ge, programmes et instructions. Supplément du B.O. N° 44 du 12/12/1985. C.N.D.P.

COS. L'écran doit afficher le nombre 0,984 807 75 avec plus ou moins de chiffres suivant le modèle utilisé.

Tableur : les formules initiales

- 1. Mettre en service le tableur.
- 2. Agrandir la fenêtre « plein écran ».
- 3. Compléter chaque cellule de la manière suivante :

cellule	contenu	type de	avec PFS Winworks				
		contenta		A	В	C	
A1	DEGRES	texte	1	DEGRES	RADIANS	COSINUS	
B1	RADIANS	texte	2	0	=A2*PI/180	=COS(B2)	
C1	COSINUS	texte	3	=A2+5		• •	
A2	0	nombre	M	<u> </u>		· · ·	
B2	=A2*PI/180 pour PFS Winworks	formule ³²	avec MS Works				
	=A2*PI()/180			A	В	C	
	pour MS Works		1	DEGRES	RADIANS	COSINUS	
C2	=COS(B2)	formule	2	0	=A2*PI()/180	=COS(B2)	
A3	=A2+5	formule	1	=A2+5			

Remarquer qu'après saisie, chaque formule est remplacée par un nombre : son résultat.

Tableur : la colonne des angles en degrés

avec PFS Winworks

- 1. Copier la formule contenue dans la cellule A3
- 2. Sélectionner la plage de cellules A4-A20.
- 3. Coller.

- 1. Copier la formule contenue dans la cellule A3
- 2. Sélectionner la plage de cellules A3-A20.
- 3. Recopier vers le bas

Recopier vers le bas : Commande du menu supérieur : Edition - Recopier vers le bas

Après calcul, le logiciel complète la colonne A avec les valeurs d'angle de 5° en 5° jusqu'à 90°. Chaque valeur est égale à 5° de plus que la précédente.

 $^{^{32}}$ Pour PFS Winworks, le nombre π est une constante. Pour MS Works, le nombre π est le résultat d'une fonction, d'où l'usage des parenthèses.

<u>exemple</u> : Le contenu de la cellule A3 est égal au contenu de la cellule A2 + 5, d'où la formule =A2 + 5 dans la cellule A3.

Observer le contenu des cellules de la colonne A, en utilisant la commande d'affichage des formules.

Commande du menu supérieur : Options - Afficher les formules

Commande du menu supérieur : Affichage -Formules

Revenir à l'affichage normal (un nombre à la place d'une formule) en actionnant à nouveau la même commande.

Tableur : la table complète

- avec PFS WinW.
- 1. Sélectionner la plage B2-C2
- 2. Copier
- 3. Sélectionner la plage B3-C20
- 4. Coller
- 5. Sélectionner les colonnes B et C.
- Formater les valeurs des colonnes B et C en nombres à 3 chiffres après la virgule.

Commande du menu supérieur : Format - Nombre -0,000

	A	U	U U
1	DEGRES	RADIANS	COSINUS
2	0	0,000	1,000
3	5	0,087	0,996
4	10	0,175	0,985
5	15	0,262	0,966
6	20	0,349	0,940
7	25	0,436	0,906
8	30	0,524	0,866
9	35	0,611	0,819
10	40	0,698	0,766
11	45	0,785	0,707
12	50	0,873	0,643
13	55	0,960	0,574
14	60	1,047	0,500
15	65	1,134	0,423

Avec PFS Win-

works, la valeur donnée

pour cos 90° est erro-

cée par 0 (zéro).

née et doit être rempla-

- 1. Sélectionner la plage B2-C20
- 2. Recopier vers le bas
- 3. Sélectionner les colonnes B et C.
- Formater les valeurs des colonnes B et C en nombres à 3 chiffres après la virgule.

Commande du menu supérieur : Format - Nombre -Fixe - Nombre de décimales : 3

Représentation graphique

<u>« à la main »</u>

Sur une feuille de papier quadrillée, construire le graphique représentant la table de cosinus précédemment élaborée.

Sur l'axe des abscisses (horizontal), marquer tous les cm les valeurs 0°, 5°, 10°, 15° ... jusque 90°. Sur l'axe des ordonnées (vertical), marquer tous les cm les valeurs 0 ; 0,1 ; 0,2 ;... jusque 1.

Grapheur : graphique automatique

avec PFS Winworks

- 1. Sélectionner la plage C2-C20.
- 2. Cliquer sur le bouton de mise en service du grapheur \rightarrow
- Le graphique apparaît dans une nouvelle fenêtre, par défaut, sous forme d'histogramme. Ce qui n'est pas le but recherché.
 - 3. Modifier le type de graphique
 - Cliquer sur le bouton Type, puis valider soit l'option Ligne (points reliés par des segments), soit l'option Nuage de points (points non reliés).
- Type de graphe

 Graphe

 Histogramme vertical

 Histogramme empilé

 Histogramme horizontal

 Igne

 Camembert

 Camembert

 Camembert

 Surface

 Maxi/Mini/Clôture
- Le grapheur ne donne aucune valeur en abscisse automatiquement.
 - 4. Afficher les valeurs en abscisse (axe horizontal).

Cliquer sur le bouton Données.

5. Compléter la colonne de gauche du tableau avec les valeurs désirées : 0°, 5°, 10°, 15°, ... 45°. Passer à la page suivante.

Actionner le bouton Page suivante

Continuer jusqu'à 90°.

6. Modifier les valeurs en ordonnées (axe vertical).

Menu supérieur : suite de commandes Graphe - Sélectionner Axe vertical
Cliquer sur le bouton Echelle
Modifier l'incrément : Mettre 0,1 à la place de la valeur affichée.

Le résultat attendu est le suivant :

- 1. Sélectionner la plage C1-C20
- 2. Cliquer sur le bouton de mise en service du grapheur. \rightarrow

 Préciser les caractéristiques principales du graphique dans la boîte de dialogue. Comme type de graphique, choisir Courbes ou Nuage de points, avec quadrillage.

Quadrillage : cocher l' option « Ajouter le quadrillage ».

- Les autres options proposées n'ont pas à être modifiées.
- 4. Afficher les valeurs en abscisse (axe horizontal) :

Commande du menu supérieur : Edition - Séries...

Dans la boîte de dialogue : Série d'abscisses A2:A20

	Nouveau
Quel type de graphique vo	oulez-vous?
Courbes	<u>+</u>
Aires	+
1Histogrammes	
Secteurs	WE
Courbes cumulées	_
Aiouter la bordure	X Aiouter le quadrillage
,	
-Comment vos données de	e feuille de calcul sont-elles
1) Dans quelle direction O <u>H</u> orizontalement	vont vos séries? • <u>V</u> erticalement
2) Première ligne contier • <u>T</u> extes de légende	nt: O <u>C</u> atégorie
3) Première colonne con O Etiquettes de catég	tient: orie ● Série de valeurs d'o
L	
Série d' <u>a</u> bscisses	: A2:A20

5. Modifier les valeurs en ordonnée (axe vertical) :

Commande Format - Axe des ordonnées	
Dans la boîte de dialogue : Intervalle 0,1	

Le résultat attendu est le suivant :

Auto-réalisation

En utilisant le tableur, construire une table de cosinus de 0° à 90° par pas de 1° (de 1° en 1°).

Aide : Utiliser la formule = A2+1 dans la cellule A3.

En utilisant le grapheur, construire sa représentation graphique.

Table trigonométrique et représentations graphiques

Table trigonométrique

Reproduire sur le papier un tableau de 3 colonnes sur 10 lignes (modèle de droite à recopier, puis compléter).

Dans la colonne de gauche, mettre les valeurs d'angle de 0° à 90° de 10° en 10° .

angle(en °)	cos	sin	tan
0°	1	0	0
10°	0,985	0,174	0,176
20°	0,940	0,342	0,364
30°	0,866	0,5	0,577

Dans les colonnes de droite suivantes,

faire correspondre pour chaque valeur d'angle son cosinus, puis son sinus, puis sa tangente. Ces résultats sont donnés par une calculette scientifique. : Taper sur la clavier de la calculette la valeur d'angle en degrés puis appuyer sur la touche SIN, pour obtenir le sinus de l'angle. Répéter une procédure similaire en utilisant la touche TAN pour afficher la tangente de l'angle.

Ecrire les valeurs arrondies au troisième chiffre après la virgule.

Tableur : créer les formules

Mettre en service le tableur.

Agrandir la fenêtre « plein-écran ».

Compléter chaque cellule de la manière suivante :

cellule	contenu	type de
		contenu
A1	DEGRES	texte
B1	RADIANS	texte
C1	COSINUS	texte
D1	SINUS	texte
E1	TANGENTE	texte
A2	0	nombre
B2	=A2*PI/180 pour PFS Winworks	formule
	=A2*PI()/180 pour MS Works	
C2	=COS(B2)	formule
D2	=SIN(B2)	formule
E2	=TAN(B2)	formule
R	=A2+10	formule
~<\)		

avec PFS Winworks

	Α	В	С	D	E
1	DEGRES	RADIANS	COSINUS	SINUS	TANGENTE
2	0	=A2*PI/18(=COS(B2)	=SIN(B2)	=TAN(B2)
3	=A2+10				

£

🖉 avec MS Works

	A	В	С	D	E
1	DEGRES	RADIANS	COSINUS	SINUS	TANGENTE
2	0	=A2*PI()/180	=COS(B2)	=SIN(B2)	=TAN(B2)
3	=A2+10				

Remarquer qu' après saisie, chaque formule est remplacée par un nombre : son résultat.

Tableur : la colonne des angles en degrés

avec PFS Winworks

- 1. Copier la formule contenue dans la cellule A3
- 2. Sélectionner la plage de cellules A4-A11.
- 3. Coller.

- 1. Copier la formule contenue dans la cellule A3
- 2. Sélectionner la plage de cellules A3-A11.
- 3. Recopier vers le bas

Recopier vers le bas : Commande du menu supérieur : Edition - Recopier vers le bas

Tableur : la table complète

avec PFS WinWorks

- 1. Sélectionner la plage B2-E2.
- 2. Copier.
- 3. Sélectionner la plage B3-E11.
- 4. Coller.

5. Sélectionner les colonnes B, C, D et E.

6. Formater les valeurs des colonnes B, C, D et E en nombres à 3 chiffres après la virgule.

Commande du menu supérieur : Format - Nombre - 0,000

7. La valeur donnée pour cos 90° est erronée et doit être remplacée par 0 (zéro)

avec MS-Works

1. Sélectionner la plage B2-E11.

2. Recopier vers le bas.

3. Sélectionner les colonnes B, C, D et E.

4. Formater les valeurs des colonnes B, C, D et E en nombres à 3 chiffres après la virgule.

> Commande du menu supérieur : Format - Nombre - Fixe - Nombre de décimales : 3

Le résultat attendu est exposé cidessous :

	A	В	С	D	E
1	DEGRES	RADIANS	COSINUS	SINUS	TANGENTE
2	0	0,000	1,000	0,000	0,000
3	10	0,175	0,985	0,174	0,176
4	20	0,349	0,940	0,342	0,364
5	30	0,524	0,866	0,500	0,577
6	40	0,698	0,766	0,643	0,839
7	50	0,873	0,643	0,766	1,192
8	60	1,047	0,500	0,866	1,732
9	70	1,222	0,342	0,940	2,747
10	80	1,396	0,174	0,985	5,671
11	90	1,571	0,000	1,000	******

Représentations graphiques

Graphique « à la main » de cosinus et de sinus

marquer tous les cm les valeurs 0°, 10°, 20° ... jusque 90°. Sur l'axe des ordonnées (vertical), marquer tous les cm les valeurs 0; 0,5; 1; 1,5 ... jusque 6.

> Comme tan 90° n'est pas défini (message d'erreur de la calculette), cette valeur ne peut être placée sur le graphique.

Grapheur : graphique automatique de sinus et de cosinus

avec PFS WinWorks

- 1. Sélectionner la plage C2-D11.
- 2. Cliquer sur le bouton de mise en service du grapheur \rightarrow

- Le graphique apparaît dans une nouvelle fenêtre, par défaut, sous forme d'histogramme. Ce qui n'est pas le but recherché.
 - 3. Modifier le type de graphique
 - Cliquer sur le bouton Type, puis valider soit l'option Ligne (points reliés par des segments), soit l'option Nuage de points (points non reliés).
- lype de graphe Graphe OK O Histogramme vertical 🔿 Histogramme <u>e</u>mpilé Annuler O Histogramme horizontal • Ligne O <u>C</u>amembert O Camembe<u>r</u>t éclaté O <u>N</u>uage de points O Surface O Maxi/Mini/Clôture
- Le grapheur ne donne aucune valeur en abscisse automatiquement.
 - 4. Afficher les valeurs en abscisse (axe horizontal).

Cliquer sur le bouton Données.

- Compléter la colonne de gauche du tableau avec les valeurs désirées : 0°, 10°, 20°, ... 90°.
- 5. Modifier les valeurs en ordonnées (axe vertical).

Le résultat attendu est le suivant :

- 1. Sélectionner la plage C1-D11
- 2. Cliquer sur le bouton de mise en service du grapheur. \rightarrow

 Préciser les caractéristiques principales du graphique dans la boîte de dialogue. Comme type de graphique, choisir Courbes ou Nuage de points, avec quadrillage.

Quadrillage : cocher l' option « Ajouter le quadrillage ».

- Les autres options proposées n'ont pas à être modifiées.
- 4. Afficher les valeurs en abscisse (axe horizontal) :

Commande du menu supérieur : Edition - Séries... Dans la boîte de dialogue : Série

d'abscisses A2:A11

-	Nouveau					
Quel type de graphique voulez-vous?						
Courbes 🛓						
Aires + Histogrammes Courbes						
Secteurs Courbes cumulées Nuages de points (X-Y) Ajout <u>e</u> r la bordure X A	jouter le quadrillage					
Comment vos données de feu	ille de calcul sont-elles					
1) Dans quelle direction von O <u>H</u> orizontalement	t vos séries? • <u>V</u> erticalement					
2) Première ligne contient:	O <u>C</u> atégorie					
3) Première colonne contien O Etiquettes de catégorie	t: O Série de valeurs d'u					

5. Modifier les valeurs en ordonnée (axe vertical) :

Commande Format - Axe des ordonnées	
Dans la boîte de dialoque : Intervalle 0.1	

Le résultat attendu est le suivant :

Auto-réalisation

Conjecture : D'après le graphique, entre 0° et 10°, le sinus d'un angle semble être proportionnel à l'angle en degrés. En utilisant le tableur-grapheur, construire la table de sinus de 0° à 10° par pas de 1° (de 1° en 1°), puis sa représentation graphique. Conclure.

Aide : Utiliser la formule = A2+1 dans la cellule A3.

Et entre 0° et 1°...?

Grapheur : graphique automatique de tangente

A partir de la table de cosinus, sinus et tangente réalisée précédemment :

Auto-réalisation

Conjecture : Sur le graphique, deux points consécutifs sont reliés par un segment de droite. Cette manière de faire est-elle correcte ?

En utilisant le tableur-grapheur, construire la table de tangente de 70° à 80° par pas de 1° (de 1° en 1°), puis sa représentation graphique.

Aide : Mettre le nombre 70 dans la cellule A2. Utiliser la formule = A2+1 dans la cellule A3. Compléter la colonne A des angles en degrés.

Conclure.

Propriétés des fonctions trigonométriques

sin/cos

La barre oblique « / » est le signe de la division tout comme « ÷ ».

Tableau « à la main »

Reproduire la table de cosinus, sinus et tangente pour les angles de 0° à 90° de 10° en 10°, précédemment définie dans la partie paragraphe « Table trigonométrique et représentations

angle(en °)	cos	sin	tan	sin/cos
0°	1	0	0	
10°	0,985	0,174	0,176	0,176
20°	0,940	0,342	0,364	
30°	0,866	0,5	0,577	

graphiques - Table trigonométrique - à la main ».

- 2. Compléter cette table avec une colonne supplémentaire titrée sin/cos. (modèle ci-dessus à recopier et compléter).
- 3. Préciser dans chaque case de cette colonne le quotient du sinus par le cosinus de l'angle considéré arrondi au troisième chiffre après la virgule.

Par exemple, pour un angle de 10°, la case de la colonne sin/cos correspondant à cet angle doit contenir le résultat de sin 10° divisé par cos 10°.

Une fois la colonne sin/cos entièrement remplie, comparer les résultats obtenus avec les valeurs de la colonne tangente.

Emettre une conjecture.

<u>Tableur</u>

1. Mettre en service le tableur

2. Agrandir la fenêtre « plein-écran »

- Reproduire le tableau de cosinus, sinus et tangente précédemment défini dans la partie Table trigonométrique et représentations graphiques - Table trigonométrique - Tableur : la table complète.
- 2. Compléter les cellules F1 et F2 en suivant les indications du tableau.

avec PFS WinWorks

3. Copier la cellule F2.

		·····
cellule	contenu	type de
		contenu
F1	SIN/COS	texte
F2	=D2/C2	formule

3. Sélectionner la plage de cellules F2-F11.

- 4. Sélectionner la plage de cellules F3-4. Recopier vers le bas. F11.
- 5. Coller.
- 6. Sélectionner la colonne F. Formater les valeurs de cette colonne en nombres à 3 chiffres après la virgule.

5. Sélectionner la colonne F. Formater les valeurs de cette colonne en nombres à 3 chiffres après la virgule.

Observer les résultats obtenus dans les colonnes E et F. Emettre une conjecture.

$sin^2 + cos^2$

1. Reproduire la table de cosinus sinus (sans la colonne tangente) pour les angles de 0° à 90° de 10° en 10°, précédem-

ı	angle(en °)	COS	sin	sin²	COS ²	sin ² +cos ²
,	0°	1	0	0	1	1
<u>.</u>	10°	0,985	0,174	0,030	0,970	
5	20°	0,940	0,342	0,883	0,117	
1 1	30°	0,866	0,5	0,75	0,25	

ment définie dans la partie paragraphe « Table trigonométrique et représentations graphiques - Table trigonométrique - à la main ».

2. Compléter cette table avec trois colonnes supplémentaires titrées successivement : sin², cos² et sin²+cos² (modèle ci-dessus à recopier et compléter). Effectuer les calculs en utilisant une calculette scientifique.

Par exemple : Pour l'angle de 10°,

- Calculer cos 10°
- Elever au carré
- Ecrire le résultat arrondi au troisième chiffre après la virgule dans le tableau
- Mettre le résultat en mémoire
- Calculer sin 10°
- Elever au carré
- Ecrire le résultat arrondi au troisième chiffre après la virgule dans le tableau
- Ajouter à ce résultat le contenu de la mémoire
- Ecrire ce dernier résultat dans le tableau.

Répéter cette séguence d'actions pour les autres valeurs d'angle.

Une fois le tableau entièrement complété, observer les résultats obtenus dans la colonne sin²+cos². Emettre une conjecture.

Tableur

1. Mettre en service le tableur

- 2. Agrandir la fenêtre « plein-écran »
- 3. Reproduire le tableau de cosinus, sinus et tangente précédemment défini dans la partie Table trigonométrique et représentations graphiques - Table trigonométrique - Tableur : la table complète.
- 4. Sélectionner les colonnes E et F
- 5. Supprimer le contenu de ces colonnes.

Commande du menu supérieur : **Edition-**Supprimer.

6. Compléter les cellules de la plage E1-G2 en suivant les indications du tableau cicontre \rightarrow .

Le nombre 2 en exposant comme dans SIN² s'obtient après action de la touche [2] située sous la touche [Echap].

avec PFS WinWorks 6 BEA

- G2.
- 8. Copier
- 9. Sélectionner la plage de cellules E3-G11.
- 10.Coller.
- 11.Sélectionner les colonnes E.F et G.
- 12.Formater les valeurs de ces trois colonnes en nombres à trois chiffres après la virgule.

Observer les résultats de la colonne SIN²+COS².

Auto-réalisation

Remplacer les valeurs d'angle de la colonne DEGRES par des valeurs quelconques. Observer à nouveau la colonne SIN²+COS².

Emettre une conjecture.

1 Marca		
cellule	contenu	type de
		contenu
E1	SIN ²	texte
F1	COS ²	texte
G1	SIN ² +COS ²	texte
E2	=D2*D2	formule
F2	=C2*C2	formule
G2	=E2+F2	formule

2		
ų	avec MS Works	

- 7. Sélectionner la plage de cellules E2- 7. Sélectionner la plage de cellules E2-G11.
 - 8. Recopier vers le bas.
 - 9. Sélectionner les colonnes E,F et G.
 - 10.Formater les valeurs de ces trois colonnes en nombres à trois chiffres après la virgule.

Conclusion

Les activités précédentes ont été pratiquées avec succès par des élèves dont le niveau de pratique informatique était très variable. L'activité « papier-crayon » servait d'exercice préparatoire à la réalisation informatique pour les groupes à faible effectif. Les autres, plus importants, étaient scindées en deux qui, alternativement, réalisait l'une puis l'autre activité.

J'ai relevé une certaine difficulté des élèves à se repérer dans le document du fait de la densité des consignes exposées. Le dilemme du réalisateur de notice est manifeste : doit il accorder aux détails une place importante aux détriment de la lisibilité ? Pour l'améliorer, il pourrait être utile de limiter le nombre d'informations. Dans ce cas la présence d'un formateur aguerri et affranchi des problèmes liés à la pratique de l'informatique, me paraît indispensable. C'est autant d'autonomie en moins pour l'élève.

Ce genre de pratique commence à recueillir un certain écho de la part des autorités compétentes car j'ai eu le bonheur de découvrir qu'elles faisaient partie du projet de programme de mathématique concernant la future classe de quatrième. En voici un extrait :

Projets de programmes pour le cycle central du collège (classes de cinquième et quatrième)³³

CONTENUS	COMMENTAIRES
Initiation à l'utilisation de ta- bleurs-grapheurs	Les tableurs-grapheurs introduisent une nouvelle manière de désigner une variable : par l'emplacement de la cellule où elle se trouve dans un tableau. Cette nouveauté est un enri- chissement pour des utilisations dont on pourra donner des exemples.
	Pour les graphiques, des choix successifs sont proposés ; ils conduisent naturellement à exami- ner la pertinence pour l'illustration d'une situation donnée.

Classe de quatrième

Avec cette évolution de l'enseignement des mathématiques, j'ai bon espoir que les activités que je propose inspireront les enseignants dans leur quête de nouvelles situations à proposer à leur élèves.

³³ B.O. N°1 du 7 Mars 1996